domingo, 19 de septiembre de 2010

SOBRETONO, ARMONICA

Sobretonos armónicos.
Un sobretono es un componente senosoidal de la forma de una onda, de mayor frecuencia que su frecuencia fundamental. Generalmente el primer sobretono es el segundo armónico, el segundo sobretono el tercer armónico, etcétera.

Uso del término

Típicamente el término se refiere a ondas acústicas, especialmente en cuanto a temas relacionados a la música. A pesar del uso mezclado, un sobretono o es armónico o es parcial. El sobretono parcial o inarmónico es un múltiplo no entero de una frecuencia fundamental.
Un ejemplo de sobretonos armónicos:
f440 Hztono fundamentalprimer armónico
2f880 Hzprimer sobretonosegundo armónico
3f1320 Hzsegundo sobretonotercer armónico
No todos los sobretonos son armónicos, o múltiplos enteros de la frecuencia fundamental. Algunos instrumentos musicales producen sobretonos más agudos o encerrados que los armónicos. Esta característica es uno de los varios elementos que aportan a su sonido.; como efecto secundario hace que las formas de onda no sean completamente periódicas.
Como la serie armónica es una secuencia aritmética (1f, 2f, 3f, 4f..), y la octava, o serie octava, es una secuencia geométrica (f, 2×f, 2×2×f, 2×2×2×f, ...), esto causa que el la serie de sobretonos divida la octava en partes más pequeñas según ascienda.
Table of Harmonics.svg


Movimiento armónico simple

 
La pelota azul describe un movimiento armónico simple.
El movimiento armónico simple (se abrevia m.a.s.) es un movimiento periódico que queda descrito en función del tiempo por una función armónica (seno o coseno). Si la descripción de un movimiento requiriese más de una función armónica, en general sería un movimiento armónico, pero no un m.a.s..
En el caso de que la trayectoria sea rectilínea, la partícula que realiza un m.a.s. oscila alejándose y acercándose de un punto, situado en el centro de su trayectoria, de tal manera que su posición en función del tiempo con respecto a ese punto es una sinusoide. En este movimiento, la fuerza que actúa sobre la partícula es proporcional a su desplazamiento respecto a dicho punto y dirigida hacia éste.
Cinemática del movimiento armónico simple
Evolución en el tiempo del desplazamiento, la velocidad y la aceleración en un movimiento armónico simple.
El movimiento armónico simple es un movimiento periódico de vaivén, en el que un cuerpo oscila a un lado y a otro de su posición de equilibrio, en una dirección determinada, y en intervalos iguales de tiempo.
Por ejemplo, es el caso de un cuerpo colgado de un muelle oscilando arriba y abajo.El objeto oscila alrededor de la posición de equilibrio cuando se le separa de ella y se le deja en libertad. En este caso el cuerpo sube y baja.
Es también, el movimiento que realiza cada uno de los puntos de la cuerda de una guitarra cuando esta entra en vibración; pero, pongamos atención, no es el movimiento de la cuerda, sino el movimiento individual de cada uno de los puntos que podemos definir en la cuerda. El movimiento de la cuerda, un movimiento ondulatorio, es el resultado del movimiento global y simultáneo de todos los puntos de la cuerda.
Posición (negro), velocidad (verde) y aceleración (rojo) de un oscilador armónico simple.

 Ecuación del movimiento

 Elongación

En un movimiento armónico simple la magnitud de la fuerza ejercida sobre la partícula es directamente proporcional a su elongación, esto es la distancia x\, a la que se encuentra ésta respecto a su posición de equilibrio. En un desplazamiento a lo largo del eje Ox, tomando el origen O en la posición de equilibrio, esta fuerza es tal que F_{x} = - kx\, donde k\, es una constante positiva y x\, es la elongación. El signo negativo indica que en todo momento la fuerza que actúa sobre la partícula está dirigida hacía la posición de equilibrio; esto es, en sentido contrario a su elongación (la "atrae" hacia la posición de equilibrio).
Aplicando la segunda ley de Newton, el movimiento armónico simple se define entonces en una dimensión mediante la ecuación diferencial
(1)  m \frac{d^{2}x}{dt^{2}} = -k x
Siendo m\, la masa del cuerpo en desplazamiento. Escribiendo \scriptstyle \omega^{2} = k/m se obtiene la siguiente ecuación donde ω es la frecuencia angular del movimiento:
(2)  \frac{d^2x}{dt^2} = a(t) = -\omega^2x
La solución de la ecuación diferencial (2) puede escribirse en la forma
(3)  x(t) = A \cos(\omega t + \phi)\,
donde:
x\, es la elongación de la partícula.
A\, es la amplitud del movimiento (elongación máxima).
t\, es el tiempo.
\phi\, es la fase inicial e indica el estado de oscilación o vibración (o fase) en el instante t = 0 de la partícula que oscila.

FRECUENCIAS CARACTERISTICAS

Frecuencia que puede identificarse y medirse fácilmente en una emisión determinada. Una frecuencia portadora puede designarse, por ejemplo, como una frecuencia característica.
Ejemplo: supongamos que un niño se está meciendo en el columpio de un jardín. El columpio tarda determinado tiempo en ir y regresar, o sea en realizar un ciclo completo. Este tiempo se llama el periodo del columpio. También podemos hablar de la frecuencia de la oscilación, es decir, del número de ciclos que realiza el columpio en un segundo. Hay una relación entre el periodo y la frecuencia; en efecto, si por ejemplo la frecuencia es de 5 ciclos en un segundo, esto significa que un ciclo tarda 1/5 de segundo en realizarse. Vemos que el periodo y la frecuencia son: uno el inverso del otro. Por lo tanto, el columpio tiene una frecuencia característica de oscilación.
El ejemplo anterior ilustra un caso general. Cuando un sistema puede oscilar (o vibrar) entonces tiene una, o varias, frecuencias características. Estas frecuencias dependen de las propiedades del sistema. Por ejemplo, en el caso del columpio la frecuencia depende de la longitud del columpio. Hay muchos sistemas que pueden vibrar: un resorte, una placa delgada sujeta en uno de sus vértices, una construcción, etc. Cada uno de estos sistemas tiene su(s) frecuencia(s) característica(s) de vibración.
Regresemos al caso del columpio con el niño. Supongamos que ahora lo vamos a empujar para que siga oscilando. Para ello tenemos que impulsarlo en determinados instantes. Supongamos que la frecuencia del columpio fuera de 2 Hz, o sea, que realizara dos vueltas completas en un segundo; por lo tanto, su periodo sería (1/2) seg = 0.5 seg. Si empujamos el columpio cada 0.2 seg. (o sea, aplicamos una fuerza), la amplitud con la que oscila el columpio no será muy grande. Si alguna vez hemos empujado a un niño en un columpio sabemos que se puede lograr una amplitud bastante grande si lo impulsamos cada vez que termina un ciclo, que en nuestro caso sería cada 0.5 seg. Por tanto, si hacemos esto último estaremos aplicando sobre el columpio una fuerza también periódica con una frecuencia igual a 2 Hz, que es precisamente la frecuencia característica de oscilación del columpio. Si empezamos aplicando la fuerza en cada periodo de 0.2 seg., o sea, con una frecuencia de 1/0.2 = 5 Hz, entonces no logramos una amplitud grande, aun si la fuerza es grande.
Lo anterior ilustra un hecho muy importante. Si a un sistema que oscila se le aplica una fuerza externa también periódica, entonces la amplitud de la oscilación del sistema dependerá de la frecuencia de la fuerza externa.
Si la frecuencia de esta fuerza es distinta de las frecuencias características del sistema, entonces la amplitud de la oscilación resultante será relativamente pequeña.

ONDAS ESTACIONARIAS

Onda estacionaria en una cuerda. Los puntos rojos representan los nodos de la onda.
 
Una onda estacionaria se forma por la interferencia de dos ondas de la misma naturaleza con igual amplitud, longitud de onda (o frecuencia) que avanzan en sentido opuesto a través de un medio.
Las ondas estacionarias permanecen confinadas en un espacio (cuerda, tubo con aire, membrana, etc.). La amplitud de la oscilación para cada punto depende de su posición, la frecuencia es la misma para todos y coincide con la de las ondas que interfieren. Hay puntos que no vibran (nodos), que permanecen inmóviles, estacionarios, mientras que otros (vientres o antinodos) lo hacen con una amplitud de vibración máxima, igual al doble de la de las ondas que interfieren, y con una energía máxima. El nombre de onda estacionaria proviene de la aparente inmovilidad de los nodos. La distancia que separa dos nodos o dos antinodos consecutivos es media longitud de onda.
Se puede considerar que las ondas estacionarias no son ondas de propagación sino los distintos modos de vibración de la cuerda, el tubo con aire, la membrana, etc. Para una cuerda, tubo, membrana, ... determinados, sólo hay ciertas frecuencias a las que se producen ondas estacionarias que se llaman frecuencias de resonancia. La más baja se denomina frecuencia fundamental, y las demás son múltiplos enteros de ella (doble, triple, ...).
Una onda estacionaria se puede formar por la suma de una onda y su onda reflejada sobre un mismo eje.(x o y).

Onda completa 
Se considera que una onda es completa cuando ha finalizado su recorrido, lo que podemos considerar como dos movimientos;
  • Cuando llega a una cresta consecutiva, habiendo recorrido un valle.
  • Viceversa.
Se pueden obtener por la suma de dos ondas atendiendo a la formula:
\displaystyle y_1=A(\sin (kx + \omega t))
\displaystyle y_2=A(\sin (kx - \omega t))
\displaystyle y = y_1 + y_2 = A(\sin (kx + \omega t) + \sin (kx - \omega t))
Siendo para x=0 y t=0 entonces y=0, para otro caso se tiene que añadir su correspondiente ángulo de desfase.
Estas formula nos da como resultado:
y(x,t)= 2A \sin (kx) \cdot \cos{(\omega t)}
Siendo k = \frac{2 \pi}{\lambda} \, y \omega = 2 \pi f = \frac{2 \pi}{T} \,

 Vientres y nodos

  • Se produce un vientre cuando \displaystyle \sin (kx)= + 1 \text{ó} - 1 , \text{siendo }  kx= \frac{\pi}{2} , \frac{3\pi}{2},...,\frac{(2n+1)\pi}{2}  \text{ para } \forall n \in \mathbb{Z}
  • \text{Si }k = \frac{2 \pi}{\lambda} \, \text{ entonces } x=\left(n + \frac{1}{2}\right)  \cdot \frac{\lambda}{2} \qquad \text{para } \forall n \in \mathbb{Z}
  • Se produce un nodo cuando \displaystyle \sin (kx)=\displaystyle 0 , \text{siendo } \displaystyle kx=0,\pi,...,n\pi\text{ para } \forall n \in \mathbb{Z}
  • \text{Si }k = \frac{2 \pi}{\lambda} \, \text{ entonces }x= n  \cdot \frac{\lambda}{2} \qquad \text{para } \forall n \in \mathbb{Z}
Siendo λ la longitud de la onda.

 Ondas estacionarias en una cuerda

Frecuencias fundamentales.
La frecuencia más baja para la que se observan ondas estacionarias en una cuerda de longitud L es la que corresponde a n = 1 en la ecuación de los nodos, que representa la distancia máxima posible entre dos nodos de una longitud dada. Ésta se denomina frecuencia fundamental, y cuando la cuerda vibra de este modo no se presentan nodos intermedios entre sus dos extremos. La siguiente posibilidad en la ecuación, el caso n = 2, se llama segundo armónico, y presenta un nodo intermedio.
  • \text{Si } x=L \text{ y } \lambda = \lambda_n \text{ entonces } L= n  \cdot \frac{\lambda_n}{2} \qquad  \text{ siendo } L \text{ la longitud de la cuerda dada}
despejamos λn:
  •  \lambda_n  = \frac{2L}{n}

Ondas estacionarias en líneas de transmisión de ondas de radio

En transmisión de ondas de radio, las ondas estacionarias en las líneas de transmisión son sumamente peligrosas para la integridad física de los componentes. Un aparato, el ROE-metro, mide el porcentaje de la onda incidente que es reflejada.
En el caso ideal en que se estableciera una onda estacionaria en la línea de transmisión, el transmisor terminaría por destruirse.
Una ROE (Relación de Onda Estacionaria) de 1,5 equivale a una reflexión de 4% de la onda incidente, y se admite que es el máximo que un transmisor de 100 Watts a transistores puede soportar sin sufrir daños. En cambio, los transmisores a válvulas son menos sensibles a las ondas estacionarias.

 Ondas sonoras estacionarias

Es un fenómeno relacionado con la reflexión del sonido. Dependiendo de cómo coincidan las fases de la onda incidente y de la reflejada, se producirán modificaciones del sonido (aumenta la amplitud o disminuye), por lo que el sonido resultante puede resultar desagradable.
Cuando la longitud de la onda estacionaria es igual a una de las dimensiones de una sala (largo, alto o ancho), se dice que la sala está en resonancia. El efecto es aún más desagradable si cabe. Hay puntos donde no llega ningún sonido (interferencia destructiva) y otros donde la amplitud se dobla (interferencia constructiva). Gráficamente, si se viese la onda se vería que la sinusoide ha desaparecido y la onda ha adquirido forma de dientes de sierra. La ondas estacionarias también se llaman eigentonos o modos de la sala.



PRINCIPIO DE SUPERPOSICION

El principio de superposición o teorema de superposición es un resultado matemático que permite descomponer un problema lineal en dos o más subproblemas más sencillos, de tal manera que el problema original se obtiene como "superposición" o "suma" de estos subproblemas más sencillos.

Técnicamente, el principio de superposición afirma que cuando las ecuaciones de comportamiento que rigen un problema físico son lineales, entonces el resultado de una medida o la solución de un problema práctico relacionado con una magnitud extensiva asociada al fenómeno, cuando están presentes los conjuntos de factores causantes A y B, puede obtenerse como la suma de los efectos de A más los efectos de B.
Ejemplos
Teorema de superposición en electrónica
En el teorema de superposición en teoría de circuitos se establece que la tensión entre dos nodos de un circuito o la corriente que atraviesa una rama es igual a la suma de las tensiones o de las corrientes producidas por cada uno de los generadores de tensión y de los generadores de corriente del circuito. En cada uno de los cálculos parciales, se conserva uno solo de los generadores y se remplazan los otros generadores de tensión por cortocircuitos y los otros generadores de corriente por circuitos abiertos.
Campos de fuerzas en mecánica newtoniana
En mecánica newtoniana el laplaciano del campo gravitatorio es proporcional a la densidad de masa; eso hace que la igualdad de distribución y a distancias idénticas el campo sea proporcional a la densidad de masa (sin embargo, en teoría de la relatividad general, el campo gravitatorio viene descrito en términos de ecuaciones diferenciales no-lineales).
Otro ejemplo lo constituyen los campos electrostático y magnetostático, que tanto en mecánica clásica como en teoría de la relatividad resultan lineales; es decir, el potencial eléctrico y el potencial vector, fijada una distribución de cargas, es proporcional al valor de éstas.
 Problemas en mecánica de sólidos
Las ecuaciones de equilibrio de un sólido resistente que relacionan las fuerzas exteriores sobre un sólido con las tensiones internas son lineales; eso significa que para cualquier sólido que no plastifique, si se duplica en valor de las fuerzas se duplicará el valor de las tensiones.
Eso sucede con independencia de la ecuación constititutiva del material, sea éste o no elástico, siempre y cuando el estado final no dependa del modo de aplicación de las cargas. En problemas de plasticidad esta condición no se cumple en general, ya que el estado final depende de la "trayectoria" que siga el estado tensional; es decir, del modo, orden y velocidad con la que se aplican las cargas.
Problemas en teoría de la elasticidad
Para un amplio rango de tensiones y deformaciones, en los materiales elásticos la tensión es proporcional a la deformación (es decir, que las componentes de los tensores de deformación y tensión están relacionadas linealmente).
Si, además, las fuerzas sobre los cuerpos son moderadas y las deformaciones resultan pequeñas (del orden del 10−2 o 10−3), entonces los desplazamientos de los puntos del sólido resultan, salvo por un movimiento de sólido rígido, casi-proporcionales a las deformaciones. Este último hecho se usa comúnmente en la resolución de problemas prácticos en ingeniería, donde se usa muy extensivamente el principio de superposición en términos de fuerzas y desplazamientos.

ENERGIA DE UNA ONDA PERIODICA

La onda periódica más simple: una onda armónica. En este ejemplo, A=1, Ω=1 y θ=0.
Las ondas periódicas son aquellas ondas que muestran periodicidad respecto del tiempo, es decir, describen ciclos repetitivos. En una onda periódica se cumple:
                                                  
                                                  
donde el periodo propio fundamental T_p = \frac {1}{F} \,\!, F \,\! es la frecuencia de la componente fundamental de la onda periódica y un número entero.
Toda onda periódica es, por definición, una onda determinista, por cuanto puede ser descrita matemáticamente (mediante un modelo matemático).

La forma más simple de onda periódica es la onda armónica (sinusoidal), que se describe matemáticamente:
                                                     x_a (t) = A \sin (\Omega t + \theta) \,\!
Esta onda está completamente caracterizada por tres parámetros: A \,\! es la amplitud de la sinusoide, \Omega \,\! es la frecuencia en radianes por segundo (rad/s), y \theta \,\! es la fase en radianes. En lugar de \Omega \,\!, a menudo se utiliza la frecuencia F \,\! ciclos por segundo o hercios (Hz), donde \Omega = 2 \pi F \,\!.
 El proceso de determinación matemática de los coeficientes A_n \,\! y las constantes de fase \theta_n \,\!, para una forma de onda dada se llama análisis de Fourier. Al igual que una forma de onda periódica puede analizarse como una serie de Fourier mediante las contribuciones relativas de la frecuencia fundamental y los armónicos superiores presentes en la forma de onda, también es posible construir nuevas formas de onda periódicas, sumando a la frecuencia fundamental distintas contribuciones de sus armónicos superiores. Este proceso se denomina síntesis de Fourier.
Es importante notar que para las señales de ancho de banda limitado (en la práctica, todas las de interés en Telecomunicaciones), la suma de armónicos es también finita:
x_a(t) = \sum_{n=1}^N A_n \sin(n \Omega t +\theta_n) \,\!

siendo N \,\! el número total de armónicos de los que se compone la onda periódica. El armónico de frecuencia más baja se denomina primer armónico o armónico de frecuencia fundamental (n=1 \,\!, por tanto de amplitud A_1 \,\!, frecuencia \Omega \,\! y fase \theta_1 \,\!). De hecho, el caso más simple, el de una onda armónica, es un caso particular para un único armónico (N=1 \,\!). Otros casos requieren un número infinito de armónicos que sólo pueden existir en sus formas perfectas como abstracciones matemáticas debido a que en la naturaleza no se pueden crear o transmitir señales de ancho de banda infinito. Sin embargo, incluso sus aproximaciones (descritos como la suma de un número limitado de armónicos) son de gran interés en la práctica, especialmente en Telecomunicaciones. Entre estos casos de señales periódicas compuestos por infinitos armónicos se encuentran las ondas cuadradas (onda compuesta exclusivamente por armónicos impares cuya amplitud es inversamente proporcional al número de armónico, es decir, x_a(t) = \frac {4A}{\pi} \sum_{n=1}^\infty \frac {1}{2n-1} \sin [(2n-1) \Omega t +\theta] \,\! ) o las triangulares.
Ejemplo de síntesis de una onda cuadrada a partir de la adición de sus componentes armónicos. La onda final resultante sólo es una aproximación debido al uso de un número finito de componentes armónicos: en total, 25. El último gráfico de la secuencia (harmonics: 25) puede ser descrito como: x_a(t) = \frac {4A}{\pi} \sum_{n=1}^{25} \frac {1}{2n-1} \sin [(2n-1) \Omega t +\pi] \,\!

Esta propiedad demostrada por Fourier sobre las ondas periódicas es importante en el estudio de la Teoría de la Información y, muy especialmente, en la demostración del Teorema de muestreo de Nyquist-Shannon. Este teorema demuestra que toda onda periódica limitada en banda (limitada a componentes armónicos por debajo de una frecuencia máxima conocida) puede ser descrita en su totalidad y sin ambigüedad por una serie de muestras no cuantificadas si se cumple que la frecuencia de muestreo es superior (nunca igual) al doble de la frecuencia del último armónico que puede contener la onda.
Ejemplo de onda periódica más compleja. La línea horizontal azul indica el nivel del valor eficaz.
 
Sin embargo, el modelo descrito para las ondas armónicas no sirve para describir estructuras periódicas más complicadas: las ondas anarmónicas. Joseph Fourier demostró que las ondas periódicas con formas complicadas pueden considerarse como suma de ondas armónicas (cuyas frecuencias son siempre múltiplos enteros de la frecuencia fundamental). Así, supongamos que x_a(t) \,\! representa el desplazamiento periódico de una onda en una cierta posición. Si x_a(t) \,\! y su derivada son continuas, puede demostrarse que dicha función puede representarse mediante una suma del tipo:
x_a(t) = \sum_{n=1}^\infty A_n \sin(n \Omega t +\theta_n) \,\!
x_a (t) = x_a (t+T_p) = x_a (t+nT_p) \,\!